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ABSTRACT
Transformer-based sequential recommendation (SR) has been boom-
ing in recent years, with the self-attention mechanism as its key
component. Self-attention has been widely believed to be able to
effectively select those informative and relevant items from a se-
quence of interacted items for next-item prediction via learning
larger attention weights for these items. However, this may not
always be true in reality. Our empirical analysis of some representa-
tive Transformer-based SR models reveals that it is not uncommon
for large attention weights to be assigned to less relevant items,
which can result in inaccurate recommendations. Through further
in-depth analysis, we find two factors that may contribute to such
inaccurate assignment of attention weights: sub-optimal position en-
coding and noisy input. To this end, in this paper, we aim to address
this significant yet challenging gap in existing works. To be spe-
cific, we propose a simple yet effective framework called Attention
Calibration for Transformer-based Sequential Recommendation
(AC-TSR). In AC-TSR, a novel spatial calibrator and adversarial cal-
ibrator are designed respectively to directly calibrates those incor-
rectly assigned attention weights. The former is devised to explicitly
capture the spatial relationships (i.e., order and distance) among
items for more precise calculation of attention weights. The latter
aims to redistribute the attention weights based on each item’s con-
tribution to the next-item prediction. AC-TSR is readily adaptable
and can be seamlessly integrated into various existing transformer-
based SRmodels. Extensive experimental results on four benchmark
real-world datasets demonstrate the superiority of our proposed AC-
TSR via significant recommendation performance enhancements.
The source code is available at https://github.com/AIM-SE/AC-TSR.
∗Both authors contributed equally.
†Corresponding author.
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1 INTRODUCTION
Sequential Recommender Systems (SRS) have been widely applied
to various online services (e.g., e-commerce [14], news websites [5],
social media [9]) to make recommendations on the next item which
may interest a given user based on her/his historical interactions
with items [22, 45]. In recent years, significant advancements have
been made in the field of SRS by employing deep learning tech-
niques [43, 46]. Various deep learning models, including recur-
rent neural networks (RNN) [13, 37], convolutional neural net-
works (CNN) [40, 58], memory networks [4], graph neural networks
(GNN) [1, 50], and attention networks [44] have been introduced
to build a variety of SRS and have achieved great success. These
SRS methods typically try to predict the next item of interest by
well capturing the intricate sequential dependencies among items
which have been sequentially interacted by users [42, 47].

In recent years, transformer-based SRS methods have gained
significant attention. Benefiting from the particular self-attention
mechanism, transformer-based methods are quite effective in cap-
turing both short-term and long-term dependencies among items
in a sequence. The pioneering work, SASRec [17], introduced the
self-attention mechanism to identify users’ dynamic preferences
based on their sequential interactions with items. BERT4Rec [38]
extended SASRec to a bidirectional self-attentive architecture and
incorporated a cloze task to capture contextual information from
both the left and right sides of the target item. Subsequent relevant
studies have explored additional influential factors in the modeling
process, such as time intervals [23], side information [52], and local
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Figure 1: (a) Removing the highest attention weight from
transformer-based SRS does not lead to a significant decrease
in model performance and even improves performance in
some cases; (b) Visualization of the attention weights from
SASRec and our proposed AC-TSR.

constraints [12], as well as techniques for reducing the model com-
plexity [7, 24, 60]. Self-attention mechanism, as the key component
of transformer-based SRS methods, is thought to have the ability to
accurately identify the influence of historical items on the next-item
prediction by correctly assigning larger attention weights to those
items which are more relevant to the target next item. However, our
observations suggest that this may not always hold true in reality.
In order to prove this statement, we conduct an empirical study
that explicitly demonstrates our findings.

To be specific, we carefully carried out an "erasing" experiment
to examine the quality of the attention weights learned by the
self-attention module in transformer-based SRS methods. In this
experiment, we removed the highest attention weight learned by
the self-attention module in various transformer-based SRS models
and then examined the performance change caused by this removal.
As shown in Fig. 1(a), the removal operation only causes a mar-
ginal decrease in recommendation performance and even improves
performance in some cases, as indicated by the commonly used
metric, Recall@20. This proved that the so-called most relevant
and decisive item identified by the self-attention module in most
transformer-based SRS actually has very little influence on the next-
item prediction. This further indicates that self-attention mecha-
nism may be deficient in identifying the decisive items within user
behavior sequences. In order to further verify this statement, we
visualized the attention weights learned by self-attention module
in SASRec in Fig. 1(b). Specifically, when given a sequence sample
from the Amazon Toys dataset, which consists of a user’s sequence
of interacted items “Jenga, book, aquarium, drum, cell phone, tea set,
laser screwdriver” and the target next item “sonic screwdriver,” the
self-attention mechanism of SASRec inaccurately assigns a larger
attention weight to the item “drum,” which is totally irrelevant to
the target next item.

After careful and in-depth analysis, we found the aforementioned
unreliable or inaccurate assignment of attention weights could be
mainly attributed to the following two factors: (1) Sub-optimal posi-
tion encoding. To capture the sequential dependencies over items,
conventional transformer-based SRS methods directly incorporate
item position embeddings into item embeddings and then use the
integrated ones to compute the attention weights, suffering from

the rank bottleneck [52] and noisy correlations [7]. Recent stud-
ies [7, 52] suggest decoupling the position encoding to calculate
position correlations independently. However, such treatment is
still sub-optimal since it fails to explicitly leverage low-level spatial
information, including order and distance information, which have
been found useful in enhancing the representation power of posi-
tional encoding in error-prone data [21]. (2) Noisy input. Existing
SRS works often assume a correlation between the target item and
all historically interacted items. However, in real-world scenarios,
this assumption might not always hold since users may uncon-
sciously interact with some items that deviate from their interests
or preferences, resulting in noisy interaction data [39, 48]. Multiple
factors, including users’ moods, social needs, personal conditions,
etc., could lead to this noisy input phenomenon. For instance, users
may randomly play popular videos or songs on a website that do
not necessarily align with their preferences, or they might make
purchases based on their mood or for their friends. These sources
of noise are challenging to identify as they often exhibit vague
patterns, posing difficulties in accurately learning users’ true pref-
erences through the self-attention mechanism. Additionally, the
self-attention mechanism is prone to overfitting on noisy input,
further complicating the problem [65].

To this end, in this paper, to address the aforementioned sig-
nificant gaps in existing SRS studies, we propose a framework
called Attention Calibration for Transformer-based Sequential
Recommendation (AC-TSR). AC-TSR utilizes two well-designed
calibrators, i.e., Spatial Calibrator (SPC) and Adversarial Cal-
ibrator (ADC) , to calibrate the unreliable attention weights il-
lustrated above. The SPC is designed to address the problem of
sub-optimal position encoding by explicitly leveraging spatial re-
lationships, such as the order and distance between items in a
user sequence, to calculate attention weights that possess greater
structural significance. Specifically, SPC incorporates sequential
relations directly into the attention matrix, eliminating the need
for additional position embeddings such as absolute, relative, or
decoupled ones. The ADC tackles the issue of noisy input by re-
distributing attention weights based on the contribution of each
historical item to the model’s prediction. The term "adversarial"
is employed because the reallocation process is performed in an
adversarial manner. The joint use of both calibrators can enhance
the robustness of the original attention map against noisy input
and enables more precise capture of user preferences.

Experiments on four benchmark datasets show that AC-TSR out-
performs both non-transformer-based SRS methods and represen-
tative transformer-based SRS methods by calibrating the attention
weights learned by the self-attention mechanism. Moreover, we
demonstrate that both calibrators are plug-and-play and thus can be
seamlessly incorporated into existing transformer-based SRS mod-
els to enhance their performance. Furthermore, we delve into each
calibrator’s influence and hyperparameters’ effect in AC-TSR. A
comprehensive analysis is carried out to shed light on why AC-TSR
can achieve such performance gains.

In summary, we make the following contributions:

• We propose the AC-TSR framework, which can effectively
reduce the impact of sub-optimal position encoding and
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noisy input on the existing transformer-based SRS models
with limited overhead.

• We develop two plug-and-play calibrators, namely spatial
calibrator and adversarial calibrator, to rectify the unreli-
able attention. This ensures that the model focuses more on
informative items when predicting the next item.

• We conduct comprehensive experiments on four benchmark
datasets, demonstrating the superiority of AC-TSR over state-
of-the-art SRS methods.

2 RELATEDWORK
2.1 Sequential Recommendation
Sequential recommender systems (SRS) aim to predict the next item
a user will likely interact with based on their past interactions. Early
works, including pattern mining based [54] and Markov chains [10,
34] based approaches focused on mining simple and low-order
sequential dependencies, constrained by rigid assumptions and
thus cannot deal with complex data with high order dependencies.
Later, with the advancements in neural networks, there has been
a shift towards utilizing complex models such as Convolutional
Neural Networks (CNNs) [40, 53, 58], Recurrent Neural Networks
(RNNs) [13, 28, 31, 32], and Graph Neural Networks (GNNs) [1, 8,
50] to deal with the complex sequence patterns in the sequential
recommendation task. For example, Caser [40] is a convolutional
sequence model to learn sequential patterns using both horizontal
and vertical convolutional filters. GRU4Rec [13] employs a gated
recurrent unit to study the temporal behaviors of users. And SR-
GNN [50] converts session sequences into graphs and uses graph
neural networks to capture complex item-item transitions.

More recently, transformer-based methods [12, 16, 17, 24, 26, 38,
66] have become the mainstream solutions due to their great poten-
tial in capturing user’s sequential behavior through self-attention
mechanism. SASRec [17] first adopts self-attention mechanism
to capture users’ sequential behaviors. And BERT4Rec [38] ex-
tends it to a bidirectional model with the help of Cloze task. In the
follow-up studies, enhancements were made by incorporating time
intervals [23], personalization [49], importance sampling [25], con-
sistency [11], multiple interests [51], evolutionary preference [8],
continue learning [61, 62] and decoupled positional encoding [7].
However, very few studies pay attention to the quality of the learned
attention weights in transformer-based SRS. In this study, we dis-
cover that in current transformer-based SRS models, the historical
items with high attention weights do not consistently contribute
to accurately predicting the target item. Based on this observation,
we propose to improve the quality of attention weights by injecting
calibrators into transformer-based SRS models.

2.2 Debates on Attention Mechanism
The debate surrounding the attention mechanism originates in the
field of deep learning: for one thing, some researchers find that
replacing high attention weights with lower ones does not affect the
model’s prediction performance [30, 36, 55–57], possibly because
the attention mechanism tends to assign higher weights to tokens
that are not important, such as punctuation and stop words; for
another, some studies in text classification [3, 15] have revealed
weak correlation between attention weights and gradient-based

feature importance metrics. Furthermore, a recent machine transla-
tion work [27] also observe that the attention mechanism fails to
accurately identify the decisive inputs for each prediction, leading
to incorrect or excessive translation in NMT. These debates on at-
tention mechanisms inspire us to re-examine the learned attention
weights in transformer-based SRS models.

In fact, there have been some SRS works that discuss the limi-
tations of the attention mechanism: Locker [12] contends that the
self-attention modules struggle to capture the short-term user dy-
namics accurately. As a result the authors introduce an inductive
local bias into the self-attention mechanism, improving the mod-
eling of short-term user dynamics while maintaining long-term
semantic information. Rec-Denoiser [2] alleviates the influence of
noise in the data by sparsifying the attention map, with the implicit
assumption that not all attention weights carry important informa-
tion in the self-attention layer. Different from these methods, our
proposed AC-TSR effectively utilizes low-level spatial information
through a spatial calibrator, and adopts an adversarial calibrator
to adaptively identify the decisive items within the interaction
sequence and automatically adjust the distribution of attention
weights without relying on prior knowledge.

3 PRELIMINARY
3.1 Problem Setup
LetU, I denote the sets of users and items, respectively. For a user
𝑢 ∈ U, the historical interactions of this user can be represented
as S𝑢 = [𝑣𝑢1 , 𝑣

𝑢
2 , . . . , 𝑣

𝑢
|S𝑢 | ], where 𝑣

𝑢
𝑖

∈ I is the i-th interaction
in the chronologically ordered sequence S𝑢 and |S𝑢 | denotes the
sequence length. The set of users’ actions can be represented as
S = {S1,S2, . . . ,S |U | }, where |U| is the number of users.

Given the historical interaction sequence S𝑢 of user 𝑢, the goal
of sequential recommendation is to predict the next item 𝑣𝑛𝑒𝑥𝑡 ∈ I
that user 𝑢 will interact with at the ( |S𝑢 | + 1)-th time step, denoted
as 𝑝 (𝑣𝑛𝑒𝑥𝑡 | S𝑢 ).

3.2 Transformer-based Recommenders
Due to the remarkable capability in modeling sequential data, the
transformer architecture has attracted a lot of attention and has
been widely explored in the sequential recommendation [17, 23, 38].
Among these efforts, SASRec [17] is a particularly noteworthy piece
of work, as it was the first transformer-based SRmodel and achieved
competitive performance on many public datasets. Therefore, in
this session, we take SASRec as an example to offer a succinct
overview of the transformer architecture.

3.2.1 Embedding Layer. The transformer-based recommenders
maintain an item embedding table T ∈ R | I |×𝑑 to convert items
from discrete ids to dense vectors, where 𝑑 represents the embed-
ding size. First, a user interaction sequence S𝑢 = [𝑣𝑢1 , 𝑣

𝑢
2 , . . . , 𝑣

𝑢
|S𝑢 | ]

is transformed into a fixed-length sequence Ŝ𝑢 = [𝑣𝑢1 , 𝑣
𝑢
2 , . . . , 𝑣

𝑢
𝑛 ] by

keeping most recent 𝑛 items or padding items, where 𝑛 is the maxi-
mum sequence length. Then, the sequence embedding E ∈ R𝑛×𝑑
of Ŝ𝑢 is generated through the item embedding table T. Finally, to
consider the impact of different positions within the sequence, a
learnable position embedding P ∈ R𝑛×𝑑 is added to E to obtain the
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Figure 2: Overview of the proposed AC-TSR framework. The SASRec model functions as the backbone, where its self-attention
layer is converted into anAttention Calibration (AC) layer for improved performance. Each AC layer contains a spatial calibrator
(purple dotted box) and an adversarial calibrator (green dotted box). The spatial calibrator is responsible for incorporating
spatial information such as order and distance into the attention weights. The adversarial calibrator aims to identify decisive
items and adjust the distribution of attention weights.

final sequence embedding Ê, which serves as the input for the first
transformer block.

3.2.2 Transformer Block. Transformer-based SR models usually
use several stacked transformer blocks to capture the hierarchical
dependencies between items within the input sequence. Each trans-
former block consists of two components: a self-attention layer and
a point-wise feed-forward layer.
Self-attention Layer: The core of this layer is self-attention mech-
anism, which is designed to uncover the dependencies among items
within a sequence [41]. Specifically, the output item representation
H ∈ R𝑛×𝑑 is calculated as follows:

H = Self-Attention (Q,K,V) = softmax
(
QK𝑇
√
𝑑

)
V, (1)

where Q = ÊW𝑄 , K = ÊW𝐾 and V = ÊW𝑉 , {Q,K,V} ∈ R𝑛×𝑑 are
the queries, keys and values respectively, and

{
W𝑄 ,W𝐾 ,W𝑉

}
∈

R𝑑×𝑑 are three learnable projection matrices,
√
𝑑 is the scale factor.

Thus, the attention weight A = softmax
(
QK𝑇

√
𝑑

)
establishes a whole-

range connection between all items within sequence Ŝ𝑢 . Note that
the Eq.1 can be further extended to the multi-head self-attention
to obtain better expressiveness (i.e. each attention head focuses
on a different type of attention pattern [19]). Here we only show
the single-head version for simplicity, and readers can check more
details in the original paper [41].
Point-wise Feed-forward Layer: This layer has the capability
to learn complex feature representations, thereby enhancing the
expressive power of the transformer architecture. After the calcula-
tion of self-attention, the output item representation H is fed to the

point-wise feed-forward layer:

F𝑖 = FFN (H𝑖 ) = ReLU (H𝑖W1 + b1)W2 + b2, (2)

where F𝑖 denotes the i-th output embedding, 𝑖 ∈ [1, 𝑛]; W∗ and b∗
are learnable weights and bias, respectively. Note that in Eq.2, we
leave out the residual connection, dropout, and layer normaliza-
tion for simplicity. In practice, these techniques can be adopted to
enhance stability and speed up the training process.

Transformer blocks are usually stacked to learn hierarchical item
dependencies, and the output of 𝐿-th block can be represented as:

F𝐿𝑖 = FFN
(
H𝐿𝑖

)
. (3)

3.2.3 Learning Objective. In SASRec, the prediction of the next
item 𝑣𝑛𝑒𝑥𝑡 ∈ I is based on the last element of F𝐿 , denoted as F𝐿𝑛 .
Specifically, the probability of interaction between user 𝑢 and each
item is calculated through the inner product of F𝐿𝑛 and the item
embedding obtained from the item embedding table T ∈ R | I |×𝑑 .
This process can be formulated as follows:

ŷ = softmax
(
TF𝐿𝑛

𝑇
)
, (4)

where ŷ ∈ R | I | denotes the predicted probability. Afterwards, cross-
entropy is chosen as the loss function to measure the discrepancy
between the prediction ŷ and the ground truth y:

L = −
| I |∑︁
𝑖=1

𝑦𝑖 log (𝑦𝑖 ) (5)
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4 AC-TSR FRAMEWORK
4.1 Overall Architecture
The overall architecture of AC-TSR is depicted in Fig. 2, which intro-
duces two new components, namely Spatial Calibrator (Sec. 4.2)
and Adversarial Calibrator (Sec. 4.3), into the self-attention layer
of TSR. This modification transforms the original self-attention
layer into an Attention Calibration (AC) layer. Inside each AC layer,
the attention weights computed by the original attention mecha-
nism are initially calibrated in sequence, starting with the Spatial
Calibrator and followed by the Adversarial Calibrator. Specifically,
the Spatial Calibrator integrates spatial information, including or-
der and distance, into the attention weights, while the Adversarial
Calibrator aims to identify critical items and adjust the distribution
of attention weights. Notably, the Adversarial Calibrator’s output
comprises both the perturbed attention weights and the calibrated
attention weights for enhanced performance. These two weights
are utilized to compute perturbed and calibrated representations,
respectively. The perturbed representations are employed to disrupt
the recommendation performance, whereas the calibrated represen-
tations are used to improve the recommendation performance. A
more accurate attention distribution is ultimately obtained through
the adversarial process of perturbation and calibration.

4.2 Spatial Calibrator
AC-TSR abandons traditional position encoding techniques, in-
cluding absolute and relative embeddings, as they are hindered by
the rank bottleneck [52] and the noisy correlations [7]. Instead, it
adopts a spatial calibrator (SPC) to empower the self-attention layer
with the ability to recognize spatial relationships within the input
sequence without the need for positional embeddings. To this end,
we first compute the order and log-distance between pairs of items
with respect to the position in the input sequence and then directly
use these low-level features to adjust the pre-softmax attention
weights (i.e., the QK𝑇

√
𝑑

in Eq. 1). Specifically, the low-level features
of actual order 𝑜𝑖 𝑗 and actual log-distance 𝑑𝑖 𝑗 between position 𝑖
and 𝑗 in the input sequence are defined as follows:

𝑜𝑖 𝑗 = I(𝑖 < 𝑗) =
{
1, 𝑖 < 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

𝑑𝑖 𝑗 = ln (1 + |𝑖 − 𝑗 |) . (7)

Then we use the query q𝑙
𝑖
and key k𝑙

𝑗
in each self-attention layer

to predict the orders and distances the items should have if there
exists a meaningful dependency between them:

𝑜𝑖 𝑗 = sigmoid
(
affine(𝑜 )

( [
q𝑙𝑖 ; k

𝑙
𝑗

] ))
, (8)

𝑑𝑖 𝑗 = affine(𝑑 )
( [
q𝑙𝑖 ; k

𝑙
𝑗

] )
, (9)

where 𝑜𝑖 𝑗 and 𝑑𝑖 𝑗 denote predicted order and distance, respectively.
Finally, sigmoid cross-entropy and 𝐿2 loss are adopted to calculate
the discrepancies between the predictions and the ground truths,
which are added into the origin attention weights:

𝑠
(𝑜 )
𝑖 𝑗

= 𝑜𝑖 𝑗 ln
(
𝑜𝑖 𝑗

)
+ (1 − 𝑜𝑖 𝑗 ) (1 − ln

(
𝑜𝑖 𝑗 )

)
, (10)

𝑠
(𝑑 )
𝑖 𝑗

= −
𝜃2

(
𝑑𝑖 𝑗 − 𝑑𝑖 𝑗

)2
2

, (11)

A𝑠 = softmax
(
QK𝑇
√
𝑑

+ s(𝑜 ) + s(𝑑 )
)
, (12)

where 𝜃 is a learnable scalar and A𝑠 is the calibrated attention
weights after spatial calibrator.

The core idea of the spatial calibrator is to correct the attention
weights by penalizing the attention edges that violate the order or
distance constraints (i.e. 𝑜𝑖 𝑗 or 𝑑𝑖 𝑗 ). Intuitively, if the self-attention
mechanism can capture these low-level features, then we can as-
sume that the spatial relationships are encoded in the query Q and
key K since the attention weights are calculated based on them. In
other words, the prediction errors calculated by Eq. 10 and Eq. 11
can reflect the potential weakness in the corresponding attention
weights, so we calibrate it by adding a penalty to these positions.

4.3 Adversarial Calibrator
The adversarial calibrator (ADC) aims to mitigate the noisy input
issue mentioned in Sec. 1 by making the self-attention mechanism
more focused on the informative and decisive historical items. To
achieve this goal, we design a PerturbationModule and aCorrec-
tion Module (cf. Fig. 2). Specifically, the perturbation module first
automatically identifies the decisive historical items by adding lim-
ited perturbations to the original attention weights. The correction
module then calibrates the attention weights through highlighting
the critical inputs (i.e., the perturbed positions) detected by the
perturbation module.

4.3.1 Perturbation Module. The core idea of the perturbation mod-
ule is to detect the decisive part in user sequence by perturbating
original attention weights. For a transformer-based SR model, its
performance is expected to be poor if the attention weights corre-
sponding to the decisive parts are perturbed. Based on this, for the
𝑙-th layer, a perturbation mask M𝑙 is utilized to introduce uniform
distribution 𝜇 to the spatial carlibrated attention weight A𝑙𝑠 , which
simulates the process of perturbation:

A𝑙𝑝 = M𝑙 ⊙ A𝑙𝑠 + (1 −M𝑙 ) ⊙ 𝜇, (13)

M𝑙 = sigmoid
©«
Q𝑙W𝑙

𝑄𝑝

(
K𝑙W𝑙

𝐾𝑝

)𝑇
√
𝑑

ª®®¬ , (14)

where A𝑙𝑝 , Q𝑙 and K𝑙 are the perturbed attention weight, the query
and the key in the 𝑙-th self-attention layer; ⊙ denotes the element-
wise multiplication; the W𝑙

𝑄𝑝
∈ R𝑑×𝑑 and W𝑙

𝐾𝑝
∈ R𝑑×𝑑 are two

learnable matrices.

4.3.2 Correction Module. As aforementioned, the perturbation
module aims to deteriorate the model’s performance by remov-
ing the decisive information through perturbation mask M𝑙 . In
other words, M𝑙 reveals the critical part in A𝑙𝑠 . To this end, we
propose to adjust the spatial carlibrated attention weights A𝑙𝑠 by
highlighting the essential part:

A𝑙𝑐 = A𝑙𝑠 ⊙ 𝑒1−M
𝑙

. (15)

饮尽风尘不谈过往
Highlight
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In the above equation, we increase the attention weight in the
spatial carlibrated attention A𝑙𝑠 where the perturbation module
module assigns large perturbation to (i.e., informative items that
are critical for the model output). Afterwards, inspired by [52], we
adopts a gating function to dynamically determine the amount
of adversarial calibrated attention weight A𝑙𝑐 to be fused into the
spatial carlibrated attentionweightA𝑙𝑠 , and the combined attention
weight A𝑐𝑜𝑚𝑏 is calculated as follows:

A𝑙
𝑐𝑜𝑚𝑏

= g ∗ A𝑙𝑠 + (1 − g) ∗ A𝑙𝑐 , (16)

g = 𝜎

(
Q𝑙W𝑙

𝑔 + b𝑙𝑔
)
, (17)

where W𝑙
𝑔 ∈ R𝑑×𝑑 , b𝑙𝑔 ∈ R𝑑 are trainable parameters.

4.4 Training Objective
After obtaining the perturbed attention weight A𝑝 and the com-
bined attention weight A𝑐𝑜𝑚𝑏 , we can further calculate the per-
turbed output embedding F̃𝑝 and calibrated output embedding F̃𝑐
by replacing the origin attention weight A in Eq. 1 with A𝑝 and
A𝑐𝑜𝑚𝑏 , respectively. Then we can calculate the perturbed loss L𝑃
and calibrated loss L𝐶 as follows:

L𝑃 = −
| I |∑︁
𝑖=1

𝑦𝑖 log
(
𝑦𝑃𝑖

)
, (18)

L𝐶 = −
| I |∑︁
𝑖=1

𝑦𝑖 log
(
𝑦𝐶𝑖

)
, (19)

where 𝑦𝑃
𝑖
and 𝑦𝐶

𝑖
are calculated by replacing F𝐿𝑛 in Eq. 4 with F̃𝐿𝑝,𝑛

and F̃𝐿𝑐,𝑛 , respectively.
On the one hand, we want the model’s performance based on

the perturbed attention to be worse. On the other hand, we want to
deteriorate the model’s performance with as small perturbation as
possible. Based on these two concerns, we define the final learning
objective for the perturbation module as:

L𝑃𝑓 𝑖𝑛𝑎𝑙
(
𝜃𝑃

)
= −L𝑃 (𝜃 ) + 𝛼L𝑛𝑜𝑟𝑚

(
𝜃𝑃

)
, (20)

L𝑛𝑜𝑟𝑚
(
𝜃𝑃

)
=

𝐿∑︁
𝑙=0

| |1 −m𝑙 | |2, (21)

where 𝜃𝑃 denotes the parameters for perturbation module (i.e.,{
W𝑄𝑝

,W𝐾𝑝

}
in all layers), and 𝜃 represents all other model pa-

rameters. 𝐿 is the number of transformer blocks and 𝛼 is a hyper-
parameter that balances L𝑃 and L𝑛𝑜𝑟𝑚 .

Finally, we use the following loss to supervise our AC-TSR:

L𝑓 𝑖𝑛𝑎𝑙 = L𝑃𝑓 𝑖𝑛𝑎𝑙 + L𝐶 . (22)

4.5 Model Complexity
The complexity of the AC-TSR model is derived from three com-
ponents: the original transformer, the spatial calibrator, and the
adversarial calibrator. The complexity of the original transformer
remains consistent with that of backbone models such as SASRec
and BERT4Rec. Inevitably, employing both calibrators simultane-
ously in the original transformer layer would increase the number
of parameters and computational costs. To mitigate this issue, we

propose several strategies for the training and inference stages to
enhance computational efficiency:

Training. The two calibrators can be selectively applied to each
transformer layer based on available computational resources, due
to the effectiveness of using a single type of calibrator demonstrated
by ablation study (Tab. 3). For example, if temporal relationships
are more significant in a dataset, one might prefer to only use the
spatial calibrator. In extremely resource-constrained scenarios, one
can opt to integrate a calibrator at just one layer rather than all
layers. These strategies can effectively alleviate the computational
burden introduced by the calibrators during the training stage,
while keeping the time complexity in the same order as the original
Transformer-based SR models.

Inference.We propose a lightweight version of AC-TSR, namely
AC-TSR-lite, which excludes the two types of calibrators during the
inference stage. As a result, AC-TSR-lite maintains the same number
of parameters and inference speed as the backbone TSR model. The
performance of AC-TSR-lite will be elaborated in Sec 5.2.

5 EXPERIMENTS
We conduct extensive experiments on four real-world and widely-
used datasets to answer the following research questions:

• RQ1: Does the proposed AC-TSR exhibit competitive per-
formance compared to current state-of-the-art transformer-
based SR methods?

• RQ2: Can the Spatial Calibrator and Adversarial Calibrator
be effectively integrated into representative transformer-
based SR models and improve their performance?

• RQ3: What are the impacts of different components and
hyper-parameters on AC-TSR’s performance?

• RQ4: Why can AC-TSR achieve superior performance com-
pared to other methods?

5.1 Experimental Setup
5.1.1 Datasets. The experiments are conducted on a well-known
business recommendation dataset called Yelp 1, and three cate-
gories from the Amazon Review dataset [29]: Beauty, Sports and
Toys. 2 All the interactions are regarded as implicit feedback. For
Yelp dataset, we follow [64] and only retain the transaction records
after Jan. 1st, 2019 for our experiment. To align with previous stud-
ies [17, 59, 64], we remove all items and users that occur less than 5
times in these datasets. Readers can check the statistics of all these
four datasets after preprocessing from [52].

5.1.2 Evaluation Metrics. In our experiments, following the prior
works [17, 38], we use leave-one-out strategy for evaluation. Specif-
ically, for each user-item interaction sequence, the last two items
are reserved as validation and testing data, respectively, and the
rest are utilized for training SR models. The performances of SR
models are evaluated by top-𝐾 Recall (Recall@𝐾) and top-𝐾 Nor-
malized Discounted Cumulative Gain (NDCG@𝐾) with 𝐾 chosen
from {10, 20}, which are two commonly used metrics. To ensure a
fair comparison, we adhere to the suggestion from [6, 20] by evalu-
ating the model performance in a full ranking manner, where the

1https://www.yelp.com/dataset
2http://jmcauley.ucsd.edu/data/amazon/
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Table 1: Overall performance. The highest results are denoted in bold, while the runner-up results are underscored. "*" denotes
the statistical siginificance for 𝑝 < 0.01 compared to the best baseline methods with paired 𝑡-test.

SR Model
Beauty Sports Toys Yelp

Recall NDCG Recall NDCG Recall NDCG Recall NDCG
@10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20

PopRec 0.0157 0.0242 0.0076 0.0097 0.0146 0.0244 0.0078 0.0103 0.0105 0.0172 0.0060 0.0077 0.0099 0.0161 0.0051 0.0067
BPR 0.0375 0.0590 0.0168 0.0222 0.0302 0.0480 0.0144 0.0188 0.0344 0.0560 0.0151 0.0205 0.0589 0.0830 0.0324 0.0384
GRU4Rec 0.0654 0.1002 0.0322 0.0410 0.0386 0.0609 0.0195 0.0251 0.0449 0.0708 0.0221 0.0287 0.0418 0.0679 0.0206 0.0271
Caser 0.0474 0.0731 0.0239 0.0304 0.0227 0.0364 0.0118 0.0153 0.0361 0.0566 0.0186 0.0238 0.0380 0.0608 0.0197 0.0255
LightSANS 0.0770 0.1177 0.0358 0.0461 0.0509 0.0781 0.0226 0.0294 0.0768 0.1116 0.0354 0.0442 0.0630 0.0904 0.0385 0.0453
Locker 0.0802 0.1197 0.0365 0.0464 0.0508 0.0753 0.0225 0.0286 0.0755 0.1094 0.0345 0.0430 0.0603 0.0869 0.0380 0.0446
SASRec 0.0779 0.1152 0.0353 0.0447 0.0504 0.0760 0.0224 0.0289 0.0776 0.1100 0.0352 0.0434 0.0618 0.0879 0.0387 0.0453
w/ AC 0.0817* 0.1218* 0.0375* 0.0454* 0.0532* 0.0817* 0.0235* 0.0307* 0.0825* 0.1166* 0.0371* 0.0456* 0.0664* 0.0955* 0.0407* 0.0480*
Improve. 4.88% 5.73% 6.23% 1.57% 5.56% 7.50% 4.91% 6.23% 6.31% 6.00% 5.40% 5.07% 7.44% 8.65% 5.17% 5.96%
BERT4Rec 0.0557 0.0868 0.0279 0.0358 0.0313 0.0502 0.0155 0.0202 0.0489 0.0769 0.0253 0.0324 0.0467 0.0710 0.0264 0.0325
w/ AC 0.0628* 0.0929* 0.0318* 0.0394* 0.0381* 0.0607* 0.0196* 0.0253* 0.0643* 0.0924* 0.0339* 0.0410* 0.0481* 0.0769* 0.0265* 0.0337*
Improve. 12.73% 7.03% 13.98% 10.06% 21.73% 20.92% 26.45% 25.25% 31.49% 20.16% 33.99% 26.54% 3.00% 8.31% 0.38% 3.69%
SSE-PT 0.0587 0.0936 0.0278 0.0366 0.0363 0.0580 0.0184 0.0239 0.0560 0.0837 0.0255 0.0325 0.0556 0.0779 0.0323 0.0379
w/ AC 0.0629* 0.1001* 0.0293* 0.0387* 0.0379* 0.0589* 0.0191* 0.0244* 0.0614* 0.0896* 0.0282* 0.0353* 0.0565* 0.0821* 0.0330* 0.0394*
Improve. 7.16% 6.94% 5.40% 5.74% 4.41% 1.55% 3.80% 2.09% 9.64% 7.05% 10.59% 8.62% 1.62% 5.39% 2.17% 3.96%
TiSASRec 0.0794 0.1208 0.0356 0.0461 0.0523 0.0799 0.0230 0.0300 0.0819 0.1171 0.0367 0.0456 0.0618 0.0909 0.0387 0.0460
w/ AC 0.0823* 0.1227* 0.0373* 0.0474* 0.0548* 0.0837* 0.0241* 0.0313* 0.0831* 0.1208* 0.0375* 0.0470* 0.0654* 0.0939* 0.0401* 0.0473*
Improve. 3.65% 1.57% 4.78% 2.82% 4.78% 4.76% 4.78% 4.33% 1.47% 3.16% 2.18% 3.07% 5.83% 3.30% 3.62% 2.83%

Table 2: Model Complexity.

Model # Parameters Inference speed Recall@20
Beauty Sports Toys Yelp

SASRec 0.87M 2482.33/s 0.1152 0.0760 0.1100 0.0879
AC-SASRec 0.90M 917.54/s 0.1218 0.0817 0.1166 0.0955
AC-SASRec-lite 0.87M 2482.33/s 0.1164 0.0768 0.1150 0.0913

ranking results are obtained over the entire item set rather than a
sampled subset.

5.1.3 Baseline Methods. We compare our proposed AC-TSR with
10 different baselines, including 2 general methods: PopRec and
BPR [33], 2 basic SR methods: GRU4Rec [13] and Caser [40], and
6 representative transformer-based approaches: LightSANS [7],
Locker [12], BERT4Rec [38], SASRec [17], SSE-PT [49] and Ti-
SASRec [23]. We do not select Rec-Denoiser [2] as a baseline be-
cause the authors have not released their codes and our own im-
plementation is unsuccessful due to an out-of-memory error when
computing the Jacobian matrix. In addition, it is worth mentioning
that there have been numerous transformer-based SR models in-
troduced in recent years. However, we have not considered all of
them as baselines due to the fact that some of these methods are
not suitable for direct comparison due to their reliance on different
training paradigms.

5.1.4 Implementation Details. For fair comparisions, both base-
lines and our proposed AC-TSR are implemented using the popular
recommendation framework RecBole [63] and evaluated with the
same setting. For all baselines and our proposed method, we train
them with Adam optimizer for 200 epochs, with a batch size of 256
and a learning rate of 1e-4. The max sequence length of Sports, Toys,
Beauty, and Yelp is set to 50. For LOCKER, we use a CNN as the local
encoder (same as LOCKER+Conv in their official implementation3).
For our proposed AC-TSR and other transformer-based baselines
(e.g., SASRec), we perform grid search on other hyper-parameters
to find the best combination. The searching space is: number of self-
attention layers ∈ {2, 3}, number of self-attention heads ∈ {2, 4},
3https://github.com/AaronHeee/LOCKER

hidden size ∈ {64, 128} and inner size ∈ {64, 128}. Both baselines
and our method are carefully tuned on the used datasets for best
performance.

5.2 Overall Performance (RQ1&2)
The results of various methods across all datasets are summarized in
Tab. 1. Our proposed AC-TSRmethod exhibits superior performance
on all datasets. Furthermore, we have the following observations:

Most transformer-based methods, such as SASRec and
TiSASRec, consistently outperform non-transformer-based
methods like Caser and GRU4Rec by a large margin. This ob-
servation highlights the superiority of transformer-based methods
in capturing long-range item dependencies in sequential data. Ad-
ditionally, despite BERT4Rec being a promoted version of SASRec,
its performance is not as impressive as SASRec under the full-
ranking evaluation setting, which has also been noted in previous
studie [24, 52]. One potential reason is that the original BERT4Rec
paper employs a popularity-based sampling strategy for model
evaluation. This strategy benefits BERT4Rec since its bi-directional
encoder, combined with the Cloze task, allows for improved learn-
ing of representations for popular items.

Auxiliary information can enhance the performance of
transformer-based models. By comparing the performance of
SASRec, TiSASRec, and SSE-PT, we observe that transformer-based
models can benefit from the integration of auxiliary information
such as time intervals and user personality. This is due to aux-
iliary information providing essential cues for a more profound
comprehension of users’ dynamic behaviors. Capturing these be-
haviors accurately would be otherwise difficult, relying solely on
the standard self-attention mechanism.

Spatial Calibrator and Adversarial Calibrator can be seam-
lessly incorporated into existing transformer-based SR mod-
els (TSR) and boost their performance. In our experiments, we
choose SASRec, BERT4Rec, TiSASRec, and SSE-PT as backbones,
which represent the unidirectional model, bidirectional model, and
auxiliary information enhanced model (i.e., time interval and user



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Zhou and Ye, et al.

Table 3: Ablation study of AC-TSR on Beauty dataset.

Settings Spatial Adv. Recall NDCG
order distance @10 @20 @10 @20

(A) " " " 0.0817 0.1218 0.0375 0.0476
(B) " % " 0.0791 0.1210 0.0364 0.0470
(C) % " " 0.0792 0.1201 0.0372 0.0475
(D) % % " 0.0800 0.1202 0.0367 0.0469
(E) " " % 0.0802 0.1197 0.0365 0.0464
(F) " % % 0.0776 0.1168 0.0353 0.0452
(G) % " % 0.0806 0.1188 0.0367 0.0463
(H) % % % 0.0779 0.1152 0.0353 0.0447

Table 4: Impact of different positional encoding strategies.
The SASRec is chosen as the backbone.

Position Encoding Strategy Sports Toys
Recall@20 NDCG@20 Recall@20 NDCG@20

Remove Position 0.0775 0.0294 0.1170 0.0456
Absolute Position 0.0760 0.0289 0.1100 0.0434
Relative Position 0.0753 0.0285 0.1172 0.0461
Decoupled Position 0.0769 0.0295 0.1153 0.0449
Spatial Calibrator (Ours) 0.0785 0.0298 0.1193 0.0462

embedding), respectively. And we adapt them into our proposed
AC-TSR framework by dropping their position encoding module
and replacing their transformer layer with our proposed Atten-
tion Calibration layer. As shown in Tab. 1, the TSR models inte-
grated into the AC-TSR framework (highlighted in gray) exhibit
significant performance improvements compared to the original
TSR model. Specifically, AC-BERT4Rec achieves an average rel-
ative improvement of 17.24% and 18.7% in terms of Recall@10
and NDCG@10, respectively, across the four datasets. Similarly,
AC-SASRec demonstrates average relative improvements of 6.05%
and 5.43% for Recall@10 and NDCG@10, respectively. Comparable
results are also observed in AC-TiSASRec and AC-SSE-PT. These re-
sults demonstrate the effectiveness of our proposed method and its
potential as a plug-in module for state-of-the-art transformer-based
recommendation models.

In Sec. 4.5, we discussed the impact of incorporating two calibra-
tors into transformer layers, which inevitably increases computa-
tional cost and reduces inference speed. This presents a challenge
for implementing AC-TSR in industrial scenarios. To mitigate this
issue, we propose a lightweight version of AC-TSR, called AC-TSR-
lite. The key distinction between the lite version and the original
AC-TSR lies in their usage of calibrators. In AC-TSR-lite, calibrators
are employed only during the model training phase and removed
during the inference phase, thereby maintaining the same structure
as TSR. To illustrate this, we compare the performance of SASRec,
AC-SASRec, and AC-SASRec-lite on four datasets in Tab.2. We ob-
serve that in most cases, although AC-SASRec-lite exhibits lower
Recall@20 compared to AC-SASRec, it still consistently outper-
forms SASRec and retains the same inference speed as SASRec.
This provides evidence supporting the feasibility and flexibility of
deploying AC-TSR in an industrial setting.

5.3 Ablation and Hyper-parameter Studies
(RQ3)

5.3.1 Contribution of Different Components. As shown in Table 3,
we investigate 8 settings from a combination of (1) Whether to
include order information in the Spatial Calibrator, (2) Whether

Impact of aggregation
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Figure 3: Impact of different aggregation strategies in Cor-
rection Module.
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Figure 4: Effect of balance parameter 𝛼 .

to include distance information in the Spatial Calibrator, and (3)
Whether to incorporate the Adversarial Calibrator. We can draw
the following conclusions: First, by comparing the results of setting
(F) and setting (G) with setting (H), which represents the initial SAS-
Rec, we can see that both the inclusion of order information and
distance information in the Spatial Calibrator improve the model’s
performance. Combining order information and distance informa-
tion together leads to even better performance compared to using
them separately, thus validating the rationale behind our proposed
Spatial Calibrator. Second, models equipped with our proposed Ad-
versarial Calibrator consistently outperform those without it, while
keeping other factors constant. For instance, we can compare the
performance between setting (A) and setting (E), or between setting
(B) and setting (F). This observation confirms that our Adversarial
Calibrator effectively adjusts the attention weights in transformer-
based SR models, resulting in improved performance.

5.3.2 Comparison Between Spatial Calibrator and Different Posi-
tional Encoding Strategies. We test 4 representative position embed-
ding approaches and our proposed spatial calibrator using SASRec
as the backbone. Due to limited space, we only present the compari-
son results on the Sports and Toys datasets in Tab. 4. To our surprise,
we find that removing the position embedding from SASRec does
not compromise the recommendation performance, but rather out-
performs some methods using position embedding. For instance,
on the Sports dataset, removing the position embedding achieves
higher Recall@20 than the three methods using position embedding.
On the Toys dataset, both relative position embedding and remov-
ing positions achieved competitive performance. Nonetheless, our
proposed spatial calibrator still outperforms all compared position
encoding strategies. We attribute this to the low-level features, in-
cluding order and distance, being more effectively utilized by the
self-attention mechanism, especially in noisy input scenarios.

5.3.3 Comparison Between Gating Mechanism and Other Aggrega-
tion Strategies. We also investigate the impact of various attention
aggregation strategies used in the correction module. In particular,
we compare the gating mechanism with two commonly employed
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Figure 5: Comparison of the mean Kendall-𝜏 correlation be-
tween attention weights and gradient importance measures.
The results verify that our ACmethod can improve Kendall-𝜏
correlation by a large margin.
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Figure 6: Performance comparison (Recall@20) between AC-
TSR and TSR under different sequence lengths (i.e., number
of training interactions of users) and item popularity (i.e.,
number of training interactions of items) on Amazon Beauty.

aggregation strategies: summation [52] and annealing learning [27].
The comparison results are presented in Fig. 3. We can observe
that the gating mechanism consistently outperforms the other two
strategies in most cases, which can be attributed to its ability to
dynamically control the proportions of original and calibrated atten-
tion weights. As a result, we ultimately chose the gating mechanism
as the attention aggregation strategy in the correction module.

5.3.4 Hyper-parameter Studies. In this experiment, we aim to study
the impact of hyper-parameter 𝛼 in Eq. 20. Fig.4 presents the Re-
call@10 and NDCG@10 scores of AC-TSR with different 𝛼 on Toys
and Sports datasets. From the figures, we can observe that the best
performance is achieved when the balance parameter 𝛼 is set to
0.03 or 0.05. Moreover, we observe that the impact of the balance
parameter 𝛼 varies across different datasets. Specifically, the per-
formance fluctuates within a narrower range on the Sports dataset
compared to the Toys dataset.

5.4 In-depth Analysis (RQ4)
In this section, we further validate the effectiveness of our method
from three different perspectives, including visualization, Kendall-𝜏

correlations, and the performance comparison of AC-TSR across
different sequence lengths and item popularity.
Visualization and "erasing" experiment.We visually compare
the original attention weights with the calibrated ones generated
by AC-TSR in Fig. 1(b). It can be observed that the calibrated atten-
tion better aligns with the user’s interests, resulting in improved
recommendations. Moreover, Fig. 1(a) indicates that removing the
highest scoring items in the AC-TSR model noticeably degrades
the model’s performance on all the datasets, demonstrating that
the learned attention weights in AC-TSR effectively aligns with the
actual importance of items in the recommendation process.
Correlation between attention weights and feature impor-
tance metrics. Another way to examine whether attention mecha-
nism focus on decisive inputs is computing the Kendall-𝜏 correlation
between attention weights and feature importance measures [15].
Here we use gradient-based importance measures as feature im-
portance indicators because they can effectively showcase feature
significance with well-defined semantics [18]. A lower value of
Kendall-𝜏 correlation indicates a higher inconsistency between at-
tention weights and feature importance measures. This implies that
items with high attention weights may not contribute significantly
to the model’s predictions [35]. As shown in Fig. 5, for each layer,
our AC-TSR approach significantly improves the correlation score,
implying that attention calibration can help model focus on the
decisive items.
Performance w.r.t sequence lengths and item popularity. We
compare the original TSR model and our proposed AC-TSR model
under varying sequence lengths and item popularity on the Amazon
Beauty dataset, using Recall@20 as the performance metric. As
shown in Fig 6, the enhancements brought by AC-TSR over TSR
are consistently observed across diverse sequence lengths and item
popularity levels. We also note that the performance gains from
Attention Calibration increase as the sequence length in the test
set becomes longer. As for item popularity, the most prominent
performance improvement is observed when the item popularity
falls between 300 and 400.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose the AC-TSR framework, which can ef-
fectively calibrate the unreliable attention weights generated by
existing transformer-based SR models. Specifically, AC-TSR adopts
the spatial calibrator to substitute traditional positional embed-
dings, which directly utilizes low-level features including order
and distance to yield position-aware attention weights. Addition-
ally, the adversarial calibrator is devised to adjust the attention
weights according to the reassessed contribution of each histori-
cal item to the model prediction, making attention weights more
robust to noisy input. Comprehensive experiments on four bench-
mark SR datasets show that our approach outperforms competitive
transformer-based SR methods, demonstrating the effectiveness of
AC-TSR. In the future, we intend to investigate more lightweight
calibrators and explore treating each calibrator as an adaptor to be
incorporated into pre-trained transformer-based SRmodels, thereby
achieving performance improvements with minimal computational
expense.
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